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A continuum failure criterion applicable to wood

Abstract The failure criterion is an essential part of all 
strength calculations of design. It was shown in the past that 
the tensor-polynomial equation could be regarded as a 
polynomial expansion of the real failure surface. Now it is 
shown that the third-degree polynomial is identical to the 
real failure criterion. It is also shown that the second-degree 
part of the polynomial is identical to the orthotropic exten-
sion of the von Mises criterion for initial yield. The third-
degree polynomial hardening terms of the criterion are also 
shown to incorporate the earlier theoretical explained 
mixed-mode I-II fracture equation, showing hardening to 
be based on hindered microcrack extension. For uniaxial 
loading, the failure criterion can be resolved in factors, 
leading to the derivation of extended Hankinson equations. 
This allows the relations between the constants of the total 
failure criterion to be elucidated, which is necessary for data 
fi tting of this criterion and providing a simple method to 
determine the constants by the simple uniaxial, oblique-
grain compression and tension tests. Based on this, the 
numerical failure criterion is given with the simple lower 
bound criterion for practice and for the codes.

Key words Timber · Failure criterion · Tensor-polynomial · 
Extended orthogonal von Mises criterion · Extended 
Hankinson equations

Introduction

Design and control calculations are normally based on limit 
analysis by fi nding an equilibrium system that satisfi es the 
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boundary conditions and nowhere surmounts the failure 
criterion. The derivation of the failure criterion for wood is 
given here, which is shown by van der Put1 to be identical 
to a polynomial expansion of the real failure criterion. The 
quadratic polynomial part of this polynomial is shown in the 
following section to represent the critical distortional energy 
criterion of initial yield and thus is not just an expansion, 
but is identical to the real yield criterion. It also is shown 
that the third-degree terms of the polynomial follow the 
theoretical explained mixed-mode I-II equation and repre-
sent special hardening effects by microcrack arrest. The 
fourth-degree and higher-degree polynomial terms have no 
meaning and are zero. As empirical confi rmation, the clear 
wood results given by van der Put1 are discussed together 
with the biaxial data for timber from Hemmer.2

Theory

It was shown for the fi rst time for wood by van der Put1 that 
the second-degree tensor-polynomial describes initial 
“fl ow,” which is shown here to represent the extension of 
the critical distortional energy criterion to orthotropic 
materials providing the necessary basis for exact solutions 
according to limit analysis (see Discussion). Because an 
isotropic matrix of a material may sustain large hydrostatic 
pressures without yielding, yield depends on a critical value 
of the distortional energy. This energy Wd is found by 
subtracting the energy of the volume change from the 
total strain energy. Thus, for the isotropic matrix material, 
this is
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where si are the normal matrix stresses; ti the shear stresses; 
E the modulus of elasticity; G the shear modulus; and 
n Poison’s ratio of the matrix material following 2G = E/
(1 + n).

Wood has to be regarded as a reinforced material and 
initial failure is due to failure of the isotropic matrix. This 
was shown by van der Put,3 leading to a new fracture 
mechanics theory and a new transformation of the Airy 
stress function. This makes exact solutions possible as 
applied for the derivations of the Wu4 mixed-mode I-II 
fracture criterion and the derivations of the right fracture 
energies and the relation between mode I and II stress 
intensities and energy release rates. According to van der 
Put,3 the matrix stresses can be expressed in orthotropic 
stresses as follows.

The stress in wood sx,or is n1 times the stress in the matrix 
sx due to the reinforcement in x-direction: sx,or = (Ex / E)·sx 
= n1·sx, while the reinforcement in y-direction is regarded 
to belong to the matrix, thus sy,or = sy and Ey = E of the 
matrix. For the shear stress, the multiplying factor is n6 = 
(2 + nxy + nyx)·Gxy / E. Thus, Ex, Ey, Gxy, nxy, and nyx are the 
orthotropic values of wood due to the reinforcements.

Equation 1 applies for a material with equal tension and 
compression strength. For unequal axial strengths, the 
failure condition, in x-direction is: (sx − X)·(sx + X′) = 0, 
where X is the tensile strength and −X′ the compression 
strength, as given in Fig. 1b. This condition can be written 
as
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(see Fig. 1) and the behavior is identical to that of a material 
with equal tension and compression strengths of X̄ being 
prestressed by stress px.

This result follows from the applied linear transforma-
tion. Because Eq. 1 describes a physical property, it should 
be independent of the chosen vector space and according 
to the additivity rule of linear mapping (linear transforma-
tion) is
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following from inserting sx = px, sy = py = p, and sz = pz in 
Eq. 1.

Of interest for failure by fl at crack propagation is the 
plane stress equation with sz = pz = 0; txz = tyz = 0; and 
py = py,or = p, giving for Eq. 4:
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For sy,or = tor = 0, Eq. 5 becomes
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The same applies in the perpendicular y-direction for the 
uniaxial tension and compression strengths Y and Y′ giving 
C′ = YY′ and (px,or / n1 − 2p) = Y′ − Y. This last result is 
to be expected because according to the molecular theory, 
the strength is proportional to the E modulus and thus 
is YY′ = XX′ / n1

2 and X′ − X = n1 (Y − Y′). Then it also is 
p = px,or / n1 = Y − Y′ = (X − X′)/n1.

Equation 5 becomes
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Fig. 1. von Mises criterion for wood
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where S is the shear strength and

2 1 112 1F C n XX YY= ′ = ′ ′  (8)

This value of F12 applies for initial stress redistribution and 
microcracking of the matrix and becomes lower by further 
straining reaching a near-zero value at fi nal yield or failure 
initiation. This shows early dissipation of the elastic dis-
tortional energy, as also is indicated by the orthotropic 
fi nite element calculation of Gopu.5 This dissipation of 
distortional energy is according to the incompressibility 
condition and thus follows a minimum energy principle of 
yield. At the end of this stress redistribution, fi nal yield 
occurs according to Eq. 7 with F12 = 0, leading to a com-
bined critical strain energy criterion of the reinforcements 
with a Tresca criterion of the matrix (see Discussion for 
the implications).

Materials and methods

The parameter estimation of the fi rst general failure crite-
rion of wood by van der Put1 was mainly based on uniaxial 
off-axis tension and compression tests on spruce like 
European softwoods and other species from data in the 
literature.6,7 Because this criterion also applies for uniaxial 
loading, the relations, according to Eq. 18 between the 
parameters, has to be satisfi ed and it will be shown that 
therefore the uniaxial tests are suffi cient for the estimation 
of all parameters. For the empirical verifi cation of this, an 
initial cooperative project was started for biaxial parameter 
estimation, and tests in the longitudinal–tangential plane of 
spruce like European white fi r were done by Hemmer2 on 
torsion tube tests, subjected to tension and internal pres-
sure. However, the verifi cation of Eq. 18 is lacking in litera-
ture and is therefore given here, based on these data. The 
parameter estimation in all cases was based on fi tting the 
Tsai-Wu equation,8 which can be regarded as the tensor-
polynomial expansion of the real failure equation and has 
the form:
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where s (see Fig. 2) and F are stress and strength tensors. 
In van der Put,1 it is shown that clear wood can be regarded 
as orthotropic in the main planes and the principal direc-
tions of the strengths are orthogonal (showing the common 
tensor transformations), and third-degree terms represent 
local hardening in stable tests leading for plane stress to
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For less stable tests, failure occurs at yield and F12 is small 
and higher-degree hardening terms are negligible leading 
to Eq. 11, the critical distortional energy equation of initial 
yield derived before:
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The relations between the parameters and the requirements 
for parameter estimation by uniaxial off-axis tests is as 
follows. By the uniaxial stress st, the stresses in the main 
planes are
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and expressed in the uniaxial tension and compression 
strengths (X, X′, Y, Y′) and shear strength S, this becomes
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The critical distortional energy equation of initial yield, 
Eq. 13 can be resolved into factors as follows
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giving the product of the Hankinson equations for tension 
and for compression, (where X and X′ are the strengths 
in the grain direction). This theoretical derivation of the 
empirical Hankinson equations applies according to van der 
Put1 because

2 1 1 112
2F S X Y XY+ = ′ + ′  (15)

Fig. 2. Defi nition of positive stresses
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The same can be done with Eq. 10 leading to
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This fourth-degree equation in st can be written as the 
product of two quadratic equations
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giving the Hankinson equations extended with terms con-
taining hardening parameters Ct and Cd. For a real failure 
surface the roots will be real and because one of the qua-
dratic equations gives the roots for compression and the 
other for tension, which should be valid for zero values of 
Ct and/or Cd as well (reducing then to Eq. 14), the constants 
Ct and Cd are uniquely determined.

Performing the multiplication of Eq. 17, the parameters 
of Eq. 16 are known:
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Equation 16 is equal to the empirical criterion of van der 
Put1 and Hemmer,2 which was based purely on data fi tting 
to the tensor-polynomial, showing that F1122 and other pos-
sible higher-degree terms are zero or negligible (e.g., F1266). 
This is derived here theoretically, based on the theoretically 
explained hardening terms and Eq. 16 is the exact failure 
criterion of limit analysis. The values Ct and Cd (depending 
on the stability of the test) follow from fi tting the extended 
Hankinson equations for uniaxial off-axis tension and 
compression.

Theoretically, F166 = 0 because s1 is in the plane of the 
crack and is not infl uenced by the fl at crack. For the same 
reason F122 = 0. Given that F122 = F166 = 0, the other constants 
follow from Eq. 18. This will be measurable on perfect 
straight clear specimens. For tension, F266 = 0 according to 
Eq. 18. This is confi rmed by the clear wood measurements 
with n = 2 in Eq. 34 (see Discussion). Timber specimens 
with defects show deviations of the main planes from the 
in-plane stress direction and there are always stresses per-
pendicular to the fl at crack plane such that the interaction 
terms F122 and F166 will not be zero. The high value of 
F112 and the similar behavior of F266 indicate that, due to 
the disturbances, random inclined initial cracks outside the 
main planes, are determining showing an extension of the 
in-plane Wu equation to three dimensions. As shown and 
discussed below, it is possible to determine F266 and F112 
directly and F166 and F122 then follow from Eq. 18.

As shown in van der Put,1 F12 is very small or zero for 
clear wood. The Hemmer2 data for biaxial strengths in lon-
gitudinal tension also show for timber that F12 is zero at 
yield (see Fig. 3 showing zero slope of the ellipse) and 
thus is

1 1 12S X Y XY= ′ + ′  (19)

Equation 18 now shows that, due to hardening, F12 changes 
from zero at yield to

2 12F C Ct d= −  (20)

Results

Transverse strength

In van der Put1 it is shown that the quadratic polynomial 
like Eq. 11 precisely describes the peculiar fl ow behavior of 
the transverse compression–tension strength and (rolling) 
shear strength perpendicular to the grain trol without the 
need for higher-order terms. After some strain hardening, 
the differences between radial–tangential compression 
strength and off-axes compression strength disappear and 
one directionally independent strength value remains. The 
behavior then becomes quasi isotropic and indicates the 
isotropic matrix to be determining. This also applies for 
the second hardening stage after the empty spaces in wood 
are pressed away. For tension perpendicular to the grain, 
only in a rather small region (around 90°, see Fig. 8 of van 
der Put1 in the radial direction) is the strength higher, 
making it negligible in practice such that a lower bound of 
strength will apply that is independent of the direction.

Longitudinal strengths

The longitudinal shear strength in the radial plane increases 
with compression perpendicular to this plane according to 
the coupling term F266 (direction 2 is radial direction and 
direction 1 is grain direction):
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with c = 3F266Y′S2 ≈ 0.9 (0.8 to 0.99, see Fig. 4). The value 
of c depends on the stability of the test. When c approaches 

Fig. 3. Yield criterion for F12 = 0 and s6 = 0
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c ≈ 1 (measurements of project A in Fig. 4), Eq. 21 
becomes

σ σ6
2

2 1
S Y

⎛
⎝

⎞
⎠ + ≈  (22)

being the Wu equation of fracture mechanics theoretically 
explained by van der Put.3

Equation 21 is thus shown to be an exact equation. As 
derived in van der Put,3 Eq. 22 does not only apply for 
tension with shear but also for shear with compression s2 
perpendicular to the fl at crack plane. For a high stress s2, 
the crack is closed at s2 = sc and the crack tip notices only 
the infl uence of s2 = sc because for the higher part of s2, 
the load is directly transmitted through the closed crack and 
Eq. 22 becomes

σ μ σ σ σ σ μ σ6 2
61

S S Y
Cc c= − −( ) + − = +or 2  (23)

where s2 and sc are negative, giving the Coulomb equation 
with an increased shear capacity due to friction: m|s2|. 
However, inserting the measured values of Hemmer,2 it 
appears that the frictional contribution is very small. The 
microcrack closure stress sc will be about equal to the 
tensile strength: sc ≈ −Y. The shear strength will be maximal 
raised, at high compression of sc ≈ −0.9Y′, by a factor

1 0 9 2 1 0 3 0 9 5 6 3 7 9 8 2
1 03

+ ′ −( )( ) = + ⋅ −( ) ⋅( )
=

μ . . . . . .
.

Y Y S

Thus, the combined shear–compression strength is mainly 
determined by an equivalent hardening effect, caused 
by crack arrest in the critical direction by strong layers. 
At higher s2 stresses, compression plasticity perpendicular 
to the grain (project A of Keenan and Jaeger,7 see Fig. 
4), or instability of the test (project B of Keenan and 
Jaeger7 of oblique-grain compression tests) may become 
determining.

The parabolic strength behavior at biaxial compression 
in the main planes by s1 and s2, with s6 = 0, determined 
by F112, given by the longitudinal compression data outside 
the drawn ellipse in Fig. 3, can also be explained by crack 
propagation due to initial off-axis microcracks, giving an 

extension of the Wu equation to the biaxial loading case. 
F112 has the most infl uence when s6 = 0 and when the 
theoretical value F122 = 0 is reached; then the failure 
equation is
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This can be written as
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The critical value of F112, to just have a closed failure crite-
rion surface, will occur at high absolute values of s1 and s2, 
thus in the neighborhood of s1 ≈ −X′. Inserting this value 
in the smallest term of Eq. 25 gives
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σ σ
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Thus, when c = 1, the curve reduces to a parabola and the 
requirement to have a closed failure curve is c < 1. Thus,

3 1112
2F Y X< ′ ′ .  (27)

For longitudinal tension s1, the right side of Fig. 3 is an 
ellipse, which corresponds to a second-degree equation with 
zero F112 and F122 due to instability of the test.

It is not possible to have one precise overall fi t for the 
failure criterion for the different failure types. This is 
because the values of the third-degree hardening terms 
depend on the loading state and separate fi ts are necessary 
for longitudinal tension with zero F112, F12, and F122 and for 
longitudinal compression with hardening, whereby, F112 
dominates and F12 is not zero. With the estimates of F266 and 
F112 close to their bounds for compression, and with zero 
normal coupling terms for tension, all constants of one 
general failure criterion, Eq. 16, are known according to Eq. 
18, depending on the fi tted values of Cd and Ct from uniaxial 
off-axis tension and compression tests.

Estimation of polynomial constants by uniaxial tests

Based on data fi tting of uniaxial tension and compression 
tests of Hemmer,2 the values of Cd and Ct are determined 
here. These are compared with the data and fi t of the biaxial 
measurements of Hemmer.2

In Fig. 5 of Hemmer,2 the drawn line and dashed line in 
the fi gure give the prediction of the uniaxial values based 
on the biaxial measured constants according to the general 
Eq. 16. For comparison, the fi ts of the extended Hankinson 
equations are also given here. For tension, by scratching the 
nonzero compression term of the product, the extended 
Hankinson equation (Eq. 17) becomes

σ θ σ θ σ θ θt t
t tX Y

C
cos sin

sin cos
2 2

2 2 2 1+ + ⋅ =  (28)
Fig. 4. Combined shear–tension and shear–compression strengths
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This equation fi ts the line for tension in Fig. 5 when 
Ct ≈ 11.9/X2. The Hankinson power equation (Eq. 34) 
fi ts in this case for n ≈ 1.8 and Eqs. 16, 28, and 34 give 
the same result by only one independent constant n or 
Ct.

For compression, the dashed–dot line according to Eq. 
29 is drawn through the measured points at 90° and 15°, 
giving the expected Hankinson power value of n = 2.4 in 
Eq. 34 and Cd ≈ 4/(X′)2 in

σ θ σ θ σ θ θt t
t dX Y

C
cos sin

sin cos
2 2

2 2 2 1
′

+
′

+ ⋅ =  (29)

The dashed line in Fig. 5, based on the best fi t of the biaxial 
measurements of Hemmer,2 is not a good fi t for the oblique 
grain test. This deviation is due to early instability of the 
uniaxial off-grain test. This follows because, for example, 
the ratio of the compression strengths perpendicular to the 
grain and along the grain is 0.2 in the uniaxial tests and 0.1 
in the biaxial tests, showing more hardening in the biaxial 
tests. Thus, strong hardening in the biaxial test will not 
occur under all circumstances and the hardening parame-
ters should be omitted for a consistent safe lower bound 
criterion.

A fi t of the longitudinal tensile data of Hemmer2 by 
the second-degree polynomial (ellipse) in the principal 
stresses s1 and s2 (s6 = 0) (see Fig. 3) shows F12 = 0 and 
F112 = F122 = 0 in the radial plane. Because the Hankinson 
power value for tension n is different from n = 2, there 
must be higher-degree terms for shear (F166, F266). The 
strength values according to the data fi t in Hemmer2 are 
(in N/mm2):

X X Y Y S
C X C Xt d

= ′ = = ′ = − ≈
= = ′

59 5 41 7 3 5 5 9 9 7
11 9 42 2

. ; . ; . ; . ; .
. ;

and

F1266 can be neglected. It only provides a slight local 
correction.

The data fi t for longitudinal tension with F12 = F112 = F122 
= 0, predicts a uniaxial compression strength of X′ = 
41.7 MPa, giving the failure at the same hardening state as 
in the oblique grain test (where strong biaxial compression 
hardening does not occur). The constants are

C X
C X

t

d

= = =
= ′ = =

11 9 11 9 59 5 0 00336
4 4 41 7 0 00230

2 2

2 2

. . . . ;
. .  

(30)

leading by Eq. 18 to Eq. 32 giving a better fi t than the best 
fi t of Hemmer,2 even in the compression range due to the 
application of Eq. 18 and hardening constants.

In the same way, the data fi t for longitudinal compres-
sion, based on the strength values of the best fi t of Hemmer,2 
(for comparison of the results), with c values of c112 = 0.8 
and c266 = 0.9 (starting point) leads to Eq. 31.

Because Ct, Cd and n values of the Hankinson equations 
are suffi ciently close to the published extreme values of n 
for wood with defects, the c values used here also can be 
used in general for all softwoods. For compression, Eq. 16 
becomes
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(31)

Based on the fi t for longitudinal tension (s1 ≥ 0), Eq. 16 
becomes

σ σ σ σ σ

σ
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2
2 1 1 1

2
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⎞
⎠ −1 12σ

Y  

(32)

giving a better overall fi t than Eq. 31. Compression 
hardening according to Eq. 31 occurs for low values of s6 
only, and only in the torsion tube test in the radial plane. 
Thus, Eq. 32 more generally represents the failure criterion 
for tension and compression in praxis when n ≠ 2 (in 
Eq. 34).

For tests and structures, showing early instability and no 
hardening at failure in most situations in practice (causing 
the Hankinson power value to be n = 2), for timber and 
glulam, the determining criterion becomes

σ σ σ σ σ6
2

2
1 1 2 21 1 1 1 1

S X X Y Y
− −⎛

⎝
⎞
⎠ ⋅ +

′
⎛
⎝

⎞
⎠ − −⎛

⎝
⎞
⎠ ⋅ +

′
⎛
⎝

⎞
⎠ = − ,

which is identical to Eq. 11 with F12 = 0 and 1/S2 = 1/X′Y + 
1/Y′:

σ σ σ σ σ σ σ6
2

2
1 1 1

2
2 2 2

2

1
S X X XX Y Y YY

+ −
′

+
′

+ −
′

+
′

=  (33)

Because the virtual work equations, and thus the laws of 
limit analysis, do not apply for hardening, it also is neces-
sary to use Eq. 33 in the codes in all cases for timber and 

Fig. 5. Uniaxial tension strength and compression strength
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clear wood to replace the now often used, but not valid 
Norris equations.9

Discussion

The failure criterion of wood consists of an orthotropic 
third-degree tensor-polynomial, Eq. 16, fi rst given for 
wood with all aspects by van der Put.1 This polynomial is 
shown, for the same loading cases, to be identical to the Wu 
mixed-mode I-II equation,4 which is theoretically explained 
by van der Put3 in terms of hardening due to hindered 
microcrack extension. Thus, the theoretically explained 
equation, Eq. 16, can be stated to be the real failure crite-
rion for wood.

The second-degree polynomial part of the failure crite-
rion, Eq. 7 or Eq. 11, is shown to be the orthotropic critical 
distortional energy principle for initial yield showing the 
start of dissipation of distortional energy of the elastic stage, 
and thus is, by this minimal work principle, the exact initial 
yield criterion. After further loading, at fi nal fl ow, F12 = 0. 
This means an absence of coupling terms between the 
normal stresses. This is possible only when the reinforce-
ment takes the whole normal loading, causing the matrix to 
fail by shear and the critical distortional energy principle 
thus reduces to the Tresca criterion. The necessary validity 
of the Tresca criterion is confi rmed by van der Put10,11 where 
the strongly increased (sixfold) compression strength under 
the load of locally loaded blocks and the increased embed-
ding strength of dowels is explained by the construction of 
the equivalent slip line fi eld in the specimen using the Tresca 
criterion. In addition, the many apparent contradictions of 
the different investigations are explained by this theory. 
This strong increase of the compression strength is due to 
confi ned dilatation by real hardening (when the empty 
spaces in wood are pressed away). The Tresca criterion 
satisfi es the normality rule and thus inherently the theorems 
of limit analysis for matrix failure. The normality rule thus 
need not apply for the orthotropic criterion. This condition 
is now shown to be replaced by the minimum work condi-
tion for dissipation represented by the yield equation and 
the hardening state constants Cd and Ct of Eq. 17.

The distinction between the application of Eq. 10 or Eq. 
11 simply follows from the exponent of the Hankinson 
equation (Eq. 34). Equation 14 shows that the exponent n 
of this Hankinson power formula:

σ θ σ θt
n

t
n

X Y
cos sin+ = 1  (34)

is n = 2 for tension and compression at yield when there are 
no higher-degree polynomial terms. A value of n, different 
from n = 2 thus means the presence of higher-degree terms 
due to hardening after yield given by Eq. 16.

The initial yield criterion of Eq. 13 or Eq. 14 should 
satisfy both the elastic and the yield conditions at the same 
time. Because the Hankinson power equation with n = 2 
also applies for the off-axis modules of elasticity and because 
this modulus is proportional to the strength, the Hankinson 

power equations with n = 2, Eq. 14, satisfy this requirement. 
Thus, n = 2 is necessary for initial yield. This does not only 
apply for clear wood, but it is mentioned also by Möhler12 
that n = 2 for lumber and for glued laminated wood. In 
Kollmann6 (p. 686, 809), n ≈ 2 is found for clear wood in 
bending and in tension and for the embedment strength on 
(p. 888). The combined shear–compression tests (of Keyl-
werth in Kollmann,6 p. 906) show, for off-axis longitudinal 
shear and in the radial plane, that n = 2, showing no harden-
ing terms for the shear strength. This also applies for the 
tangential plane according to the test method of Keenan 
and Jaeger,7 but in this case not for the radial plane. Early 
instability of uniaxial compression tests and strong harden-
ing in the more stable biaxial compression tests follows 
from the data of Hemmer.2

In Eq. 17, the value of the hardening state parameter 
Cd for compression or Ct for tension, determines 
entirely the hardening state and by that the precise form of 
the measured Hankinson curve. This may also, as an em-
pirical function of the stress level, determine the loading 
curves.

Because tests in longitudinal compression show other 
hardening rather than tests in tension and thus different 
terms, separate data fi ts for tension and compression 
are necessary. However, Eq. 32 for tension, also can be 
applied for compression, providing a better general equa-
tion than Eq. 33. Because of possible instability of struc-
tures at yield, hardening can be lacking (as in the oblique 
grain test) and the second-degree polynomial, or critical 
strain energy yield condition (Eq. 33), applies as the ulti-
mate failure condition for the codes.

Conclusions

A derivation is given of the orthotropic extension of the 
critical distortional energy principle of yield, showing energy 
dissipation according to a minimum energy principle. This 
leads at fi nal yield to an extended Tresca criterion for matrix 
failure. For stable tests, hardening is possible, leading to a 
general polynomial failure criterion of the fourth degree. 
This criterion can be resolved in two factors: for com-
pression and for tension leading to extended Hankinson 
equations for uniaxial loading, making determination of all 
constants of the general failure criterion possible from 
simple uniaxial oblique-grain compression and tension tests 
instead of problematic biaxial tests. The extended Hankin-
son equations also show necessary relations between the 
constants of the general criterion, providing necessary data-
fi tting conditions. For compression and for tension, the 
value of one hardening state constant fully describes the 
form of the hardening curve at different hardening stages, 
providing the possibility of a new hardening description. 
The normality rule does not apply for orthotropic wood 
because the matrix is determining initially. Because dissipa-
tion at yield is according to a minimum energy principle, 
this rule can be replaced by the hypothesis of intrinsic 
minimum work.
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